

Dreh-Antriebe und Dreh-Hub-Kombinationen

erweiterte Baureihen bis 250.000 Nm

Zertifiziert nach DIN EN ISO 9001

Mögliche Dreh- und Hubbewegungen

Dreh-Antrieb

Dreh-Hub-Kombination

HKS Dreh-Antriebe GmbH

Leipziger Straße 53-55

D-63607 Wächtersbach-Aufenau Telefon: +49 (0) 6053 / 6163 - 0 Telefax: +49 (0) 6053 / 6163 - 39 e - mail: vertrieb@hks-partner.com Internet: www.hks-partner.com

Inhaltsverzeichnis

Einleitung	4+5
Hinweise für die Einsatzplanung und Einsatzbeispiele	6
Datenblatt zur Größenbestimmung und zur Gefahrenanalyse	7
Betriebshinweise	8
Endlagendämpfung, Abmessungen der Keilnaben-Profilbuchsen	9
Zusatzeinrichtungen und Sonderausführungen	10
Technische Daten der Dreh-Antriebe	10+11
Funktionsbeschreibung	11
Einbaumaße für Standard Dreh-Antriebe	12+13
Einbaumaße für Zusatzeinrichtungen	14+15
Einstellen der Paßfederlage	16
Ersatzteilliste	17
Einleitung für Dreh-Hub-Kombinationen	18
Funktionsbeschreibung für Dreh-Hub-Kombinationen	19
Technische Daten der Dreh-Hub-Kombinationen, Zylinder vorne	20
Einbaumaße für Dreh-Hub-Kombinationen, Zylinder vorne	21
Technische Daten der Dreh-Hub-Kombinationen, Zylinder hinten	22
Einbaumaße für Dreh-Hub-Kombinationen, Zylinder hinten	23

Einleitung

Auf der Grundlage der jahrelangen problemlosen Einsätze der HKS Dreh-Antriebe basiert die konsequente Weiterentwicklung der in diesem Katalog vorgestellten erweiterten Baureihen. Weiterhin werden gemäß dem neuesten Stand der Technik kompakte Dreh-Hub-Kombinationen in verschiedenen Ausführungen für erweiterte Einsatzmöglichkeiten angeboten.

In diesem Katalog werden Begriffe wie Schwenkmotoren und Drehzylinder in Anlehnung an die DIN durch den

Begriff Dreh-Antrieb ersetzt.

Für Ihre Einsatzplanung können die folgenden typischen Merkmale bei allen HKS-Produkten berücksichtigt werden:

- Kleine Baumaße
- Alle Gleitflächen oberflächengehärtet, geschliffen und poliert
- Gleiches Drehmoment in beiden Richtungen
- Variable austauschbare Befestigungsarten
- Keine innere Leckage, dadurch können Zwischenpositionen exakt gehalten werden
- Variable Positionierung der Antriebswelle (siehe Seite 16)
- Austauschbarkeit sämtlicher Bauteile
- Doppelte Außenabdichtungen (lecksicher)
- Für (fast) alle Druckmedien geeignet
- Endlagendämpfung für alle Bewegungen möglich
- Dichtungsmaterial namhafter Hersteller
- Verwendung von hochwertigen und hochfesten Werkstoffen
- Qualitätsüberwachung mit gewissenhafter Endkontrolle
- Sämtliche Zwischendrehwinkel sind mit und ohne Dämpfung lieferbar
- Dreh- und Linearkolben können auf ihre Endanschläge gefahren und belastet werden
- Kolbenendlagen können durch Näherungsschalter abgefragt werden
- Verschiedene Zusatzeinrichtungen lieferbar
- Ihre Sonderwünsche werden soweit möglich berücksichtigt

Dieses Leistungspaket wird abgerundet durch eine konsequente Serienfertigung mit entsprechender Lagerhaltung, das bedeutet:

- Kurze Lieferzeiten
- Günstiges Preis-Leistungsverhältnis

Die einzelnen Baugruppen bieten Ihnen zusätzlich folgende Merkmale

Dreh-Antriebe DA-H

- Betriebsdruck bis 210 bar (höherer Betriebsdruck nach Absprache möglich)
- Drehmomente bis 250.000 Nm
- Sichere, stabile und kompakte Gehäuseausführung in Sphäroguß
- Endlagendämpfung beidseitig in das Gehäuse integrierbar
- Drehwinkel über 360° in Sonderausführung möglich
- Sehr geringes Drehwinkelspiel (max. 20 Winkelminuten, auf Wunsch 10 Winkelminuten)

Dreh-Hub-Kombination mit Linearzylinder vor dem Dreh-Antrieb

Dreh-Hub-Kombination DHK-H-ZV

- Betriebsdruck bis 160 bar
- Drehmomente bis 16.000 Nm Standard
- Hublängen je nach Baugröße bis ca. 1.200 mm
- Hohe Hubkräfte (unabhängig vom Drehmoment)
- Ausführung der Antriebswelle nach Kundenwunsch möglich
- Steuerwelle für Drehbewegung möglich
- Drehwinkelspiel bei Keilwellenverbindung bis 1,2°
- Kleineres Drehwinkelspiel bei Zahnwellenprofil (auf Wunsch 30 Winkelminuten)
- Drehbewegung unter Last in jeder Hublage möglich

Dreh-Hub-Kombination mit Linearzylinder hinter dem Dreh-Antrieb

Dreh-Hub-Kombination DHK-H-ZH

- Betriebsdruck bis 210 bar
- Drehmomente bis 14.700 Nm Standard
- Kurze Baulänge
- Steuerwelle für Dreh- und Hubbewegung
- Drehwinkelspiel bei Keilwellenverbindung bis 1,2°
- Kleineres Drehwinkelspiel bei Zahnwellenprofil (auf Wunsch 30 Winkelminuten)
- Drehbewegung unter Last in jeder Hublage möglich

Dreh-Antriebe und Dreh-Hub-Kombinationen können auch in Pneumatik-Ausführung geliefert werden.

Hinweise für die Einsatzplanung

An hydraulische Dreh-Antriebe und Dreh-Hub-Kombinationen werden die unterschiedlichsten Anforderungen im Hinblick auf Bewegungsablauf, Drehmoment, Positioniergenauigkeit, Halten und Sichern der Position, Abmessungen und Befestigungsarten gestellt. Hierbei können Sie die intensive Beratung durch Techniker der Firma HKS oder durch unsere Vertreter und Vertretungen im In- und Ausland heranziehen.

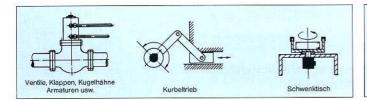
Da die Einsatzfälle und Betriebsbedingungen der Anwender recht unterschiedlich sind, kann hier nur auf einige Hauptmerkmale zur richtigen Größenbestimmung (übertragendes Drehmoment in Nm) des Dreh-Antriebes eingegangen werden.

Bei Unklarheiten zur Größenbestimmung senden Sie bitte den ausgearbeiteten Fragebogen auf der rechten Seite an uns, so daß wir Ihnen einen Vorschlag unterbreiten können.

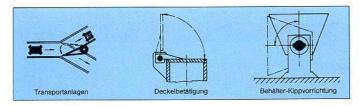
Soll einer Masse aus dem Stillstand heraus eine Schwenkbewegung mit dem Winkel ϕ_{ges} in der Zeit t_{ges} erteilt werden, müssen äußere Verluste (Reibungskräfte) überwunden, Massen beschleunigt und anschließend verzögert werden. Die Summe der hieraus resultierenden Momente ergibt das benötigte Antriebsmoment für den Dreh-Antrieb.

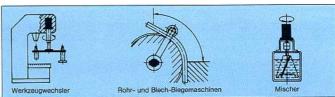
Hierbei ist darauf zu achten, daß in jeder möglichen Schwenkposition folgende Forderung erfüllt ist:

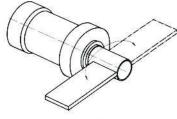
M. = Gesamtmoment


 M_L = Lastmoment

M_B = Beschleunigungsmoment


$$M_t \ge M_L + M_B$$


Je nach Lage (horizontal, vertikal) der Kraftübertragung für den Schwenkvorgang müssen für das Lastmoment M, und das Beschleunigungsmoment M_B die entsprechenden Berechnungen vorgenommen werden.


Der Forderung nach schnellen Taktzeiten kann durch Vergrößerung der Anschlußquerschnitte entsprochen werden.

Für die Größenbestimmung der Dreh-Antriebe bei horizontaler Einbaulage ist die entsprechende vertikale Schwenkbewegung zu beachten:

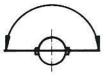


Fig. 2

Fig. 4

Fig. 5

6

Telefax Datenblatt zur Größenbestimmung und zur Gefahrenanalyse

An Firi	ma:	HKS Dreh	-Antriebe Gmbl	Н		Von Firma: Herr/Fra				
PLZ Tel	aße: Z / Ort: efon: efax:	Leipziger 63607 Wä 06053/616 06053/616	chtersbach 3-0			Straße: PLZ / Or Telefon: Telefax:	t:			
Pro	ojekt / k	Cennwort	Kommission		Sachbearbei	ter			Datum	
Tec	hnisch	e Daten		Dre	h-Antrieb			Linear-An	trieb	
1.2 1.3 1.4	Hebela Gewic Radial Separa	ht	g	r _ G _	n Nein	_ m _ kg		Hubkraft . Zugkraft . R .		N
2.2.13.	Schwe Gesam Einbau Figur (nkwinkel ef ntschwenkw ulage horizo (siehe Seite ulage vertika	ffek. inkel ontal 6 unten)	1:-	2 3 4 5	_ in Grad _ in Grad		Hub _		mm
4. 4.1	Schwe Taktfo Arbeit	nkzeit Ige sstunden pr		Z _		_ sek./min	./Std.	Hubzeit ₋		sek
5.2 5.3 5.4 5.5	eff. Ar Max. z Förder Anlage Umgel	ulikanlage beitsdruck rul. Systemd strom entemperati bungstempe osmedium	ur	p2 _ Q _ C1 _		_ bar _ l/min. _ °Celsius		p1		bar
6.	Beson Einsatz	dere zbedingung	en	-						
7. 8.	Erford	gungen am I erliche Eige striebes		_						
9.	DämSteuDrehHohKeil	npfung Ierwelle nwinkelvers Iwelle wellenprofil nabenbuchs	ľ							
	Positio	nsschalter er Antrieb		_		med	chanisch			induktiv

Betriebshinweise

Einbau und Inbetriebnahme

Die Antriebswelle ist fluchtend zum Gegenstück einzubauen, um eine Überschreitung der zulässigen Axial- und Radialkräfte zu vermeiden. Vor der Inbetriebnahme ist das Hydraulik-System sorgfältig zu reinigen und zu entlüften.

Druckflüssigkeit

Es sind Mineralöle nach der Gruppe HLP DIN 51524 / Teil 2 und VDMA Blatt 24318 zu empfehlen. Ebenfalls können schwer entflammbare Flüssigkeiten der Gruppe HFC und HFD Verwendung finden. Hierbei bitten wir jedoch um entsprechende Angaben.

Entlüftung

Bei waagerechtem Einbau und obenliegenden Anschlüssen erfolgt die Entlüftung über die Entlüftungsschrauben. Bei abweichender Einbaulage bitten wir um Rücksprache im Werk.

Filterung

Es ist empfehlenswert die Filterung der Druckflüssigkeit zwischen Pumpe und Dreh-Antrieb (Druckleitung) vorzunehmen. Die Filtereinheit sollte bei 10 my liegen.

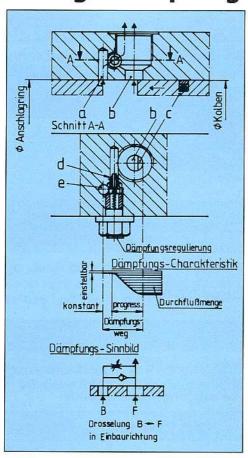
Ölwechsel

Ölwechsel ist erforderlich und richtet sich nach der Größe der Anlage. Bei verschmutztem Öl ist ein Wechsel in entsprechend kürzeren Zeitabständen notwendig.

Temperaturbereich

-10° C bis +75° C

Bei höherer und niedrigerer thermischer Belastung bitten wir um Rückfragen im Werk.


Hinweise für den Dauerbetrieb

Die angegebenen Werte sind Effektivwerte, die nicht zu überschreiten sind. Bei mehrschichtigem Betrieb, schnellen Taktzeiten und sehr hohen Dauerbeanspruchungen empfehlen wir einen Sicherheitsfaktor von 70% des maximal zulässigen Drehmomentes zu berücksichtigen.

Wichtiger Hinweis für die Hohlwellenausführung

Zum Übertragen des vollen Drehmomentes ist es erforderlich, die Welle in hochfestem Material auszuführen. Eine Berechnung der Welle auf Torsionsfestigkeit ist unbedingt zu empfehlen.

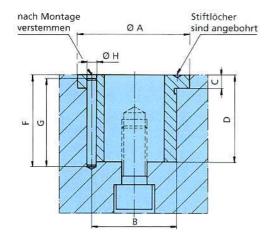
Endlagendämpfung

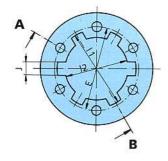
Funktionsbeschreibung der Endlagendämpfung

Das vom Kolben (c) verdrängte Druckmedium strömt zunächst durch die Anschlußbohrung (b) frei ab, bis der Kolben (c) die Bohrung (b) vollständig verschließt und somit die Kolbengeschwindigkeit drosselt. Nach völliger Überdeckung des Kolbens (c) kann das Medium nur durch die Bohrung (a) entweichen. Die Durchflußmenge von a nach b kann durch die Drosselschraube (d) reguliert werden. Bei Druckeintritt in umgekehrter Richtung strömt das Medium von b nach a. Das Rückschlagventil öffnet sich und es erfolgt freier, ungedrosselter Durchfluß bei a in den Zylinderraum. Die Bohrung (b) wird nach der Rückbewegung des Kolbens (c) wieder freigegeben.

Je nach Einsatzfall ist es möglich, den Dämpfungsweg und die Dämpfungscharakteristik speziell abzustimmen.

Einstellen der Dämpfung

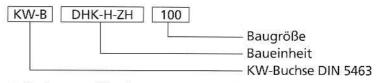

Nach Lösen einer selbstdichtenden Kontermutter ist mittels Innensechskantschlüssel der Drosselquerschnitt einstellbar.


Die Schraube des Kegeldrosselventils ganz hineindrehen und anschließend wieder eine Umdrehung lösen. Nun kann die Feineinstellung der Dämpfung erfolgen.

Optimierte Dämpfung auf Kundenwunsch möglich

Größe DA-H	40	50	63	80	100	125	140	160	180	200	225	225 \$	250	280	300
Dämpfungs- winkel α ca.	32°	28°	29°	23°	22°	22°	17°	15°	17°	12°	12°	10°	19°	17°	16°

Schnitt A-B



Keilnaben-Profilbuchsen

Baugröße	40	50	63	80	100	125	160
Keilnabenprofil nach DIN 5463	6x 11x14	6x 16x20	6x 21x25	6x 26x32	8x 36x42	8x 46x54	8x 62x72
Ø A -0,1	21	26	33	40	52	70	90
В	M18x 1	M23x 1	M30x 1	M37x 1,5	M48x 1,5	M64x 1,5	M82x 1,5
Alternativ-Ø m6	18	23	30	37	48	64	82
C	4	6	6	6	6	8	10
D	25	27	32	37	50	60	80
Е	17	22	28	35	46	61	79
F	27	32	37	42	57	72	88
G	25	30	35	40	55	70	85
Ø H H7/m6	2,5	3	4	4	5	6	8
I1 H11	14	20	25	32	42	54	72
12 нт	11	16	21	26	36	46	62
J F10	3	4	5	6	7	9	12

Werkstoff C45 (Nachbehandlung durch QPQ-Verfahren) Anderungen vorbehalten

Keilnaben-Profilbuchsen DIN 5480 auf Anfrage

Dreh-Antriebe

Einsatzgebiete

Die Einsatzgebiete unserer Dreh-Antriebe liegen im gesamten industriellen Bereich, wie z.B. in Baumaschinen, Werkzeugmaschinen, Biegemaschinen, Gießerei-, Bergbau-, Land- und Verpackungsmaschinen, Transferstraßen, Handhabungstechnik, Armaturen, Schiffsbau, Fahrzeug- und Lüftungstechnik, usw.

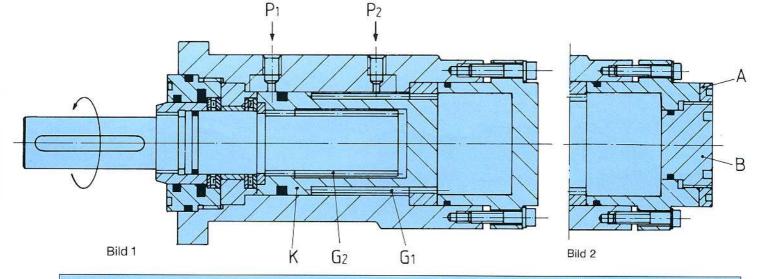
HKS Dreh-Antriebe zeichnen sich durch folgenden Standard aus:

- 20 Baugrößen bis 250 000 Nm von Kolben-Ø 40-450 mm
- Je Baugröße 4 Drehwinkelbereiche: 90°, 180°, 270° und 360°
- Antriebswelle mit 2 Paßfedern oder Zahnwellenprofil DIN 5480
- Doppelte Abdichtung an der Antriebswelle

Zusatzeinrichtungen

- Beidseitige Endlagendämpfung
- Drehwinkelverstellung bis ± 4°
- Steuerwelle
- Hohlwelle mit Profil DIN 5463, DIN 5480 bzw. DIN 6885

Sonderausführungen


- Antriebswelle mit KW-Profil nach DIN 5463
- Antriebswelle mit zweitem Antriebszapfen
- Ausführung der Antriebswelle und des Befestigungsflansches nach Kundenwunsch
- Drehwinkelverstellung über den gesamten Schwenkbereich
- Endschaltereinrichtung
- Direkter Ventilanschluß
- 3fach-Positionierung
- Alle Zwischendrehwinkel sind lieferbar
- Drehbereich über 360°
- See- und Meerwasserbeständigkeit
- Vorsatzlager für hohe Radialkräfte
- Drehrichtungsänderung
- Weitere Sonderkonstruktionen sind möglich
- Betriebsdrücke bis 250 bar und mehr auf Anfrage lieferbar

Technische Daten der Baureihen DA-H 40 bis DA-H 160

Тур		DA-H 40	DA-H 50	DA-H 63	DA-H 80	DA-H 100	DA-H 125	DA-H 140	DA-H 160
max. Nen bei 210 ba	ndrehmoment ar (Nm)	200	340	650	1300	2500	5107	7100	11300
Nenndreh (Nm/bar)	nmoment	0,96	1,62	3,10	6,20	11,90	24,32	33,80	53,80
max. Betr	iebsdruck (bar)	210	210	210	210	210	210	210	210
max. Rad (N)	ialbelastung	1567	2976	4364	7875	11250	17552	17800	36300
max. Axia (N)	lbelastung	8000	10000	14000	19050	24900	34100	34800	46200
	Winkel 90°	0,020	0,033	0,066	0,131	0,255	0,518	0,759	1,145
Schluck-	Winkel 180°	0,040	0,066	0,131	0,262	0,509	1,036	1,518	2,290
volumen	Winkel 270°	0,060	0,099	0,196	0,391	0,763	1,554	2,277	3,435
(dm³)	Winkel 360°	0,080	0,132	0,262	0,521	1,018	2,071	3,036	4,580
	Winkel 90°	4	5	8,5	16,7	24,1	47	74	114
Gewicht	Winkel 180°	4,5	5,8	9,8	19,1	29,2	55	87	136
(kg)	Winkel 270°	5	6,9	11	21,5	34	63,5	101	154
	Winkel 360°	5,5	7,4	12,2	24	38,5	72,5	115	170

Änderungen vorbehalten

* Betriebsdrücke bis 250 bar und mehr auf Anfrage lieferbar

Funktionsbeschreibung

Der durch die Anschlüsse P1 oder P2 zugeführte Öldruck bewirkt an der Antriebswelle eine Drehbewegung. Dabei wird die Linearbewegung des Kolbens K durch mehrgängige, gegenläufige Steilgewinde an Gehäuse, Kolben und Welle in eine Drehbewegung umgewandelt.

Drehrichtung

Durch Druckeintritt in P1 dreht sich die Antriebswelle aus der Grundstellung nach links (gegen den Uhrzeigersinn), siehe Bild 1. Drehrichtungsänderung als Sonderausführung möglich.

Normallage der Paßfeder

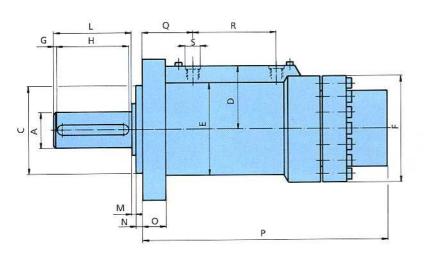
Werkseitige Einstellung bei Lage des Kolben K wie in Bild 1 dargestellt. Lageveränderungen sind möglich (siehe Seite 16, "Einstellen der Paßfederlage").

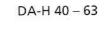
Drehwinkelverstellung

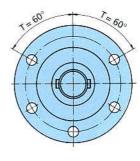
(siehe Bild 2)

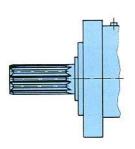
Bei der Standardausführung liegt der Drehwinkel bis zu 4° im Plusbereich. Ein genauer Drehwinkel wird durch die Zusatzeinrichtung WV wie folgt erreicht:

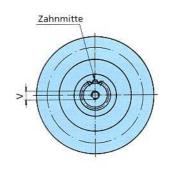
Konterring A lösen, Regulierschraube B auf den gewünschten Drehwinkel einstellen, Konterring A fest anziehen (Stirnlochschlüssel verwenden).

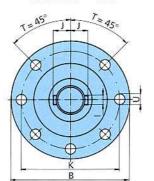

Technische Daten der Baureihen DA-H 180 bis DA-H 300 Technische Daten der Baureihen bis DA-H 450 auf Anfrage

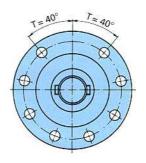

Тур		DA-H 180	DA-H 200	DA-H 225	DA-H 225 S	DA-H 250	DA-H 280	DA-H 300
max. Nen bei 210 ba	ndrehmoment ar (Nm)	16200	22300	3200	38920	44000	60800	76000
Nenndreh (Nm/bar)	nmoment	77,14	106,20	152,38	185,33	209,52	289,52	361,90
max. Betr	iebsdruck (bar)	210	210	210	210	210	210	210
max. Radi (N)	ialbelastung	tung 37600		69000	69000	78000	84600	89400
max. Axia (N)	Ibelastung	47400	62000	63100	63100	66500	71000	76000
	Winkel 90°	1,678	2,261	3,388	4,127	4,6072	6,348	7,9304
Schluck-	Winkel 180°	3,356	4,522	6,676	8,245	9,2145	12,695	15,862
volumen (dm³)	Winkel 270°	5,034	6,783	10,014	12,368	13,821	19,043	23,79
(um)	Winkel 360°	6,712	9,044	13,352	16,491	18,429	25,391	31,724
	Winkel 90°	150	194	404	487	630	874	1126
Gewicht	Winkel 180°	187	238	488	543	726	1011	1308
(kg)	Winkel 270°	213	264	565	637	815	1164	1489
200 1800-2011	Winkel 360°	245	306	630	684	912	1292	1677


Änderungen vorbehalten

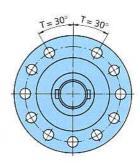

* Betriebsdrücke bis 250 bar und mehr auf Anfrage lieferbar

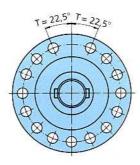

Standardausführung

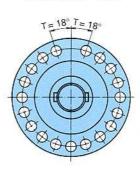



Тур	DA-H 40	DA-H 50	DA-H 63	DA-H 80	DA-H 100	DA-H 125	DA-H 140	DA-H 160
Ø A k 6	22	28	35	42				
Ø A m 6					55	70	80	100
DIN 5400	W 22 x 1,25	W 28 x 2	W 35 x 2	W 40 x 2	W 55 x 2	W 70 x 2	W 80 x 3	W 100 x 3
DIN 5480	x 16 x 8 f	x 12 x 8 f	x 16 x 8 f	x 18 x 8 f	x 26 x 8 f	x 34 x 8 f	x 25 x 8 f	x 32 x 8 f
ØB	98	110	128	150	178	222	250	278
Ø C f 7	55	68	80	100	115	150	160	190
D	43	49	57	66	80	94	105	127
ØE	66	72	87	108	130	167	187	206
ØF	75	82	95	118	147	183	210	240
G	2,5	2	5	5	5	7	5	5
H DIN 6885	45	56	70	100	100	125	140	200
I DIN 6885	8	8	10	12	16	20	22	28
J DIN 6885	14	17	20,5	24	31,5	39,5	45	56
K	84	90	108	130	155	195	220	245
L	50	60	80	110	110	140	150	210
M	3	3	3,5	3	4	4	7	5
N	4	4	5	6	6	8	10	12
0	16	18	25	30	31	37	40	43
P Winkel 90°	124	133	152	187	245	281	304	365
P Winkel 180°	149	164	200	240	311	392	401	474
P Winkel 270°	182	200	245	290	366	480	499	593
P Winkel 360°	210	232	284	345	432	550	597	707
Q	39	39	48	57	65	74	78	94
R Winkel 90°	28	31	37	47	56,5	76	82	110
R Winkel 180°	41	48	57	74	89	118,5	130	168
R Winkel 270°	55	65	79	101	121,5	162,5	180	224
R Winkel 360°	68,5	80,5	99	125	154	207	229	285
S	G 1/8"	G 1/8"	G 1/4"	G 3/8"	G 1/2"	G 1/2"	G 1/2"	G 3/4"
T	60°	60°	60°	45°	45°	40°	40°	40°
Anzahl U	5	5	5	7	7	8	8	8
U	9	9	11	11	14	18	18	22
V	Zentrierboh			2. Form D (r	nit Gewinde)	-	1

Änderungen vorbehalten

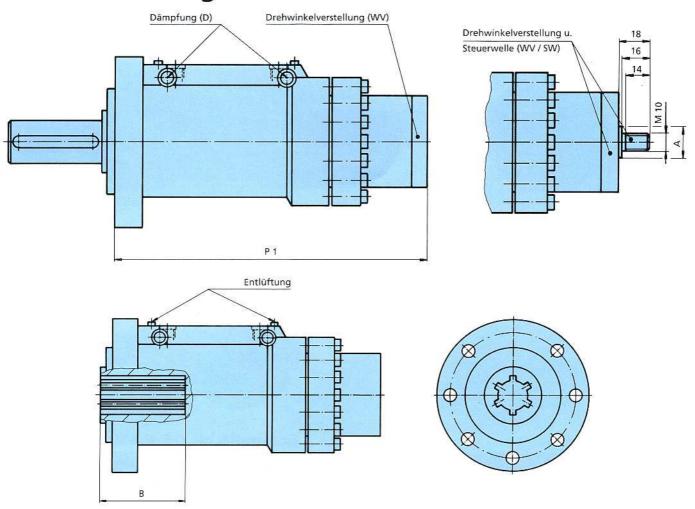

DA-H 80 -100


DA-H 125 - 160


DA-H 180 - 200

DA-H 225 - 250

DA-H 280 - 300

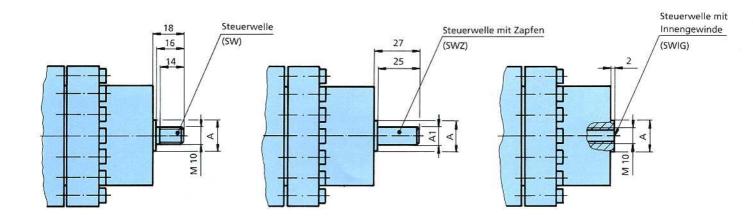

Bestellbeispiel Seite 15

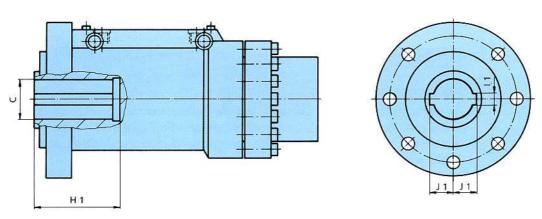
Baumaße bis DA-H 450 auf Anfrage

Тур	DA-H 180	DA-H 200	DA-H 225	DA-H 225 S	DA-H 250	DA-H 280	DA-H 300
Ø A k 6							
ØAm6	105	120	140	140	150	170	180
DIN 5480	W 105 x 3	W 120 x 5	W 140 x 5	W 140 x 5	W 150 x 5	W 170 x 5	W 180 x 5
DIN 3480	x 34 x 8 f	x 22 x 8 f	x 26 x 8 f	x 26 x 8 f	x 28 x 8 f	x 32 x 8 f	x 34 x 8 f
ØВ	298	325	385	385	450	490	555
Ø C f 7	210	235	260	260	300	340	380
D	138	150	224	224	240	266	285
ØE	226	252	300	300	346	394	440
ØF	270	295	350	350	385	435	470
G	5	5	5	5	10	10	10
H DIN 6885	200	200	250	250	280	280	280
I DIN 6885	28	32	36	36	36	40	45
J DIN 6885	58,5	67	78	78	83	94	100
K	265	290	345	345	400	450	500
	210	210	260	260	300	300	300
M	5	5	6	6	6	6	6
N	12	12	15	15	20	20	20
0	45	54	64	64	90	100	110
P Winkel 90°	435	440	570	690	710	790	840
P Winkel 180°	565	587	732	805	875	1000	1060
P Winkel 270°	702	730	900	995	1060	1205	1285
P Winkel 360°	880	878	1069	1220	1261	1408	1510
Q	125	125	155	155	224	261	271
R Winkel 90°	119	128	159	175	155	183	194
R Winkel 180°	186	202	240	276	248	287	302
R Winkel 270°	253	273	321	381	343	392	414
R Winkel 360°	321	346	403	484	437	493	528
S	G 1"	G 1"	G 1"	G 1"	G 1"	G 1"	G 1"
T	30°	30°	22,5°	22,5°	22,5°	18°	18°
Anzahl U	11	11	15	15	15	19	19
U	22	22	22	22	26	26	32
V		- CONT.	7455 00000	orm D (mit Ge	1.00%	\$1000 P	Till Service Till

Änderungen vorbehalten

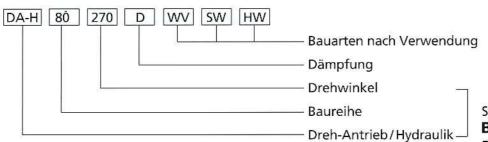
Zusatzeinrichtungen


Bauart Hohlwelle (HW)


Beachten Sie bitte den wichtigen Hinweis zur Hohlwellenausführung auf Seite 8

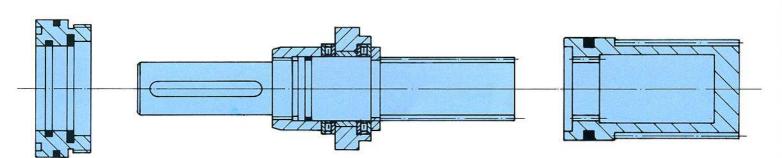
Тур	DA-H 40	DA-H 50	DA-H 63	DA-H 80	DA-H 100	DA-H 125	DA-H 140	DA-H 160
Zusatzeinrichtung W\	/ – Winkelve	erstellung			•			
P1 Winkel 90°	142	149	172	212	245	296	334	392
P 1 Winkel 180°	167	182	220	263	311	392	431	505
P 1 Winkel 270°	200	218	265	315	381	485	529	622
P 1 Winkel 360°	228	250	305	370	442	550	627	740
Zusatzeinrichtung SW	– Steuerwe	elle			AX	,,		0:
Ø A f7	16	18	18	25	25	25	25	40
Ø A1 h6	10	10	10	16	16	16	16	25
Sonderausführung HV	V – Hohlwe	lle DIN 546.	3 (DIN 5480	auf Anfrag	ge)			4
В	26	30	35	40	50	62	62	82
Keilnabenprofil								
DIN 5463	6x11x14	6x16x20	6x21x25	6x26x32	8x36x42	8x46x54	8x52x60	8x62x72
Sonderausführung HV	VP – Hohlw	elle – Paßfe	dernuten (DIN 6885)				
H 1	45	55	65.	90	105	120	120	150
J 1	7,8	10,1	14,1¹)	18,3	24,3	31,8	34,4	42,4
Ø C ^{H7}	12	16	24	30	42	55	60	75
11	4	5	8	8	12	16	18	20

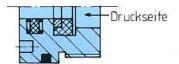
Änderungen vorbehalten


1) Nuttiefe nach DIN 6885 Blatt 3

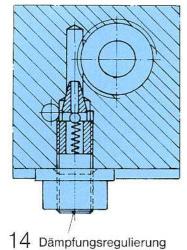
Bestellbeispiel:

Bauart Hohlwelle (HWP)

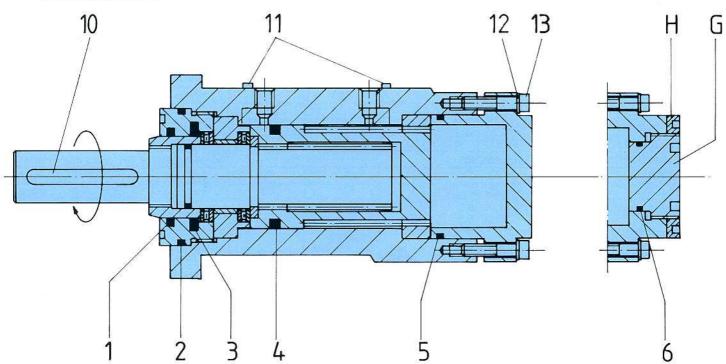


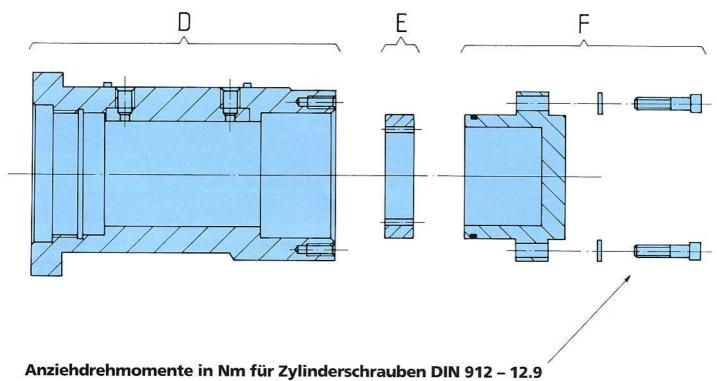

Standardausführung
Baumaße bis DA-H 450
auf Anfrage

Тур	DA-H 180	DA-H 200	DA-H 225	DA-H 225 S	DA-H 250	DA-H 280	DA-H 300
Zusatzeinrichtung WV -	Winkelverste	llung	X	20.		w.	
P1 Winkel 90°	475	480	645	765	725	865	930
P1 Winkel 180°	595	626	807	880	910	1075	1150
P1 Winkel 270°	742	770	975	1070	1095	1280	1375
P1 Winkel 360°	900	920	1140	1295	1286	1483	1600
Zusatzeinrichtung SW - S	Steuerwelle						
Ø A f7	32	40	40	40	40	40	40
Ø A1h6	25	25	25	25	25	25	25
Sonderausführung HW -	Hohlwelle D	IN 5463 (DIN	1 5480 auf Ar	nfrage)			
В	100	100	120	120	120	130	140
Keilnabenprofil DIN 5463	10x72x82	10x82x92	10x92x102		10x102x112	10x112x125	DIN 5472 130x145x24
Sonderausführung HWP	 Hohlwelle 	 Paßfedern 	uten (DIN 68	85)			
H 1	150	175	175	175	175	200	200
J 1	42,4	52,9	56,4	56,4	61,4	67,4	78,4
Ø C ^{H7}	75	95	100	100	110	120	140
11	20	25	28	28	28	32	36


Änderungen vorbehalten

Einbau der Stangendichtung


Einstellen der Paßfederlage


Die Welle *B* in Pfeilrichtung nach rechts drehen bis der Kolben *C* an der Antriebswelle *B* anliegt. Danach sind die Zylinderschrauben (13) zu lösen (ca. 5 mm herausdrehen). Den Boden *F* gegen die Zylinderschrauben herausziehen. Die gewünschte Paßfederlage wird nun durch Drehung der Welle *B* in Pfeilrichtung rechts erreicht.

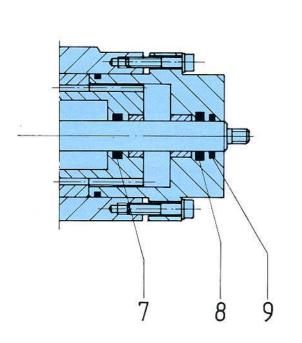
Nach dem Einstellen der Paßfederlage sind alle Zylinderschrauben (13) mit einem Drehmomentschlüssel anzuziehen. Das entsprechende Anziehdrehmoment entnehmen Sie bitte der Tabelle auf Seite 17.

Hinweis

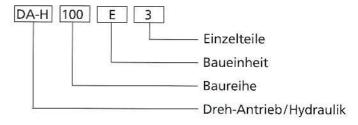
Die Dichtungen müssen mit geeigneten Werkzeugen (Dichtungsheber) entfernt werden. Die Dichtungsflächen dürfen dabei nicht beschädigt werden.

Baureihe DA-H 40 50 63 80 100 125 140 160 180 200 225 225 S 250 280 300 17 17 17 43 84 148 148 330 650 650 650 650 1100 1100 1100

Ersatzteilliste


Baueinheit

- A Dichtring
- B Antriebswelle
- C Kolben
- D Gehäuse
- E Zahnring
- F Boden
- G Regulierschraube
- H Konterring


Einzelteile

- 1 Quad-Ring
- 2 O-Ring mit Stützring
- 3 Stangendichtung
- 4 Kolbendichtung
- 5 O-Ring (Boden) mit Stützring
- 6 O-Ring (Regulierschraube) mit Stützring
- 7 Stangendichtung (Kolben)

- 8 Stangendichtung (Boden)
- 9 Quad-Ring (Boden)
- 10 Paßfeder DIN 6885 (2 Stück)
- 11 Entlüftungsschrauben
- 12 Sicherungsscheiben
- 13 Zylinderschrauben DIN 912-12.9
- 14 Dämpfungsschrauben

Bestellbeispiel:

Dreh-Hub-Kombinationen

Im Zuge der Technik müssen immer mehr Bewegungsabläufe automatisiert werden. Für Dreh- und Hubbewegungen, die synchron oder getrennt ausgeführt werden sollen, bieten Ihnen die Dreh-Hub-Kombinationen von HKS die ideale Lösung.

Hierbei wurde der bewährte HKS Dreh-Antrieb mit einer doppelt wirkenden Lineareinheit zu einer kompakten Baueinheit zusammengefaßt.

Für den jeweiligen Einsatzfall kann die optimale Baueinheit aus zwei Baureihen gewählt werden.

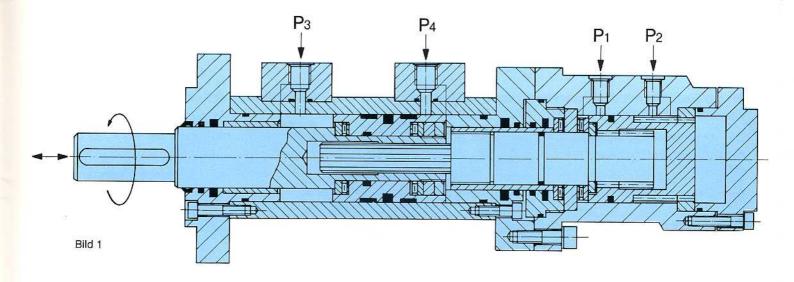
Einsatzgebiete

Die Einsatzmöglichkeiten der Dreh-Hub-Kombinationen von HKS liegen im gesamten industriellen Bereich, wie z. B. Werkzeugmaschinen, Glasindustrie, Biegemaschinen, Transferstraßen, Handhabungstechnik, Schiffsbau, Fahrzeug- und Lüftungstechnik usw.

Die Baureihe mit dem Linearzylinder vor dem Dreh-Antrieb bietet

- 8 Baugrößen bis 16.000 Nm
- Betriebsdruck bis 160 bar
- Hubkraft bis 360.000 N
- Hublänge bis ca. 1.200 mm
- je Baugröße 4 Drehwinkelbereiche 90°, 180°, 270°, 360°
- Antriebswelle mit 2 Paßfedern, DIN 6885, wahlweise DIN 5480

Die Baureihe mit dem Linearzylinder hinter dem Dreh-Antrieb bietet


- 8 Baugrößen bis 14.700 Nm
- Betriebsdruck bis 210 bar
- Hubkraft bis 150.000 N
- Hublänge ist abhängig vom Drehwinkel
- Antriebswelle mit KW-Profil DIN 5463

Zusatzeinrichtungen

- Endlagendämpfung für Dreh- und Hubbewegung
- Drehwinkelverstellung bis ± 4°
- Steuerwelle

Sonderausführungen

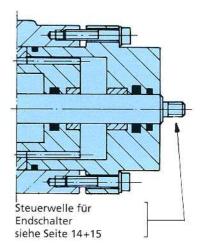
- Befestigungsflansch nach Kundenwunsch
- Fußbefestigung
- Endschaltereinrichtungen
- Direkter Ventilanschluß
- Alle Zwischendrehwinkel von 0-360° sind lieferbar
- See- und Meerwasserbeständigkeit
- Längenmeßgerät in Kolbenstange integrierbar

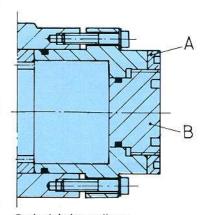


Funktionsbeschreibung

Der durch die Anschlüsse *P1* und *P2* zugeführte Öldruck bewirkt an der Antriebswelle eine Drehbewegung. Dabei wird die Linearbewegung des Kolbens *K* durch mehrgängige, gegenläufige Steilgewinde an Gehäuse, Kolben und Welle in eine Drehbewegung umgewandelt. Strömt Druckflüssigkeit durch die Anschlüsse *P3* oder *P4* in den Hubzylinder, wird die Kolbenstange ein- bzw. ausgefahren. Hub- und Drehbewegungen können synchron oder getrennt erfolgen. Mit Zusatzeinrichtungen sind genaue Positionierungen der Bewegungen zu erzielen.

Durch Druckeintritt in *P1* dreht sich die Antriebswelle aus der Grundstellung nach links (gegen den Uhrzeigersinn). (Eine Drehrichtungsänderung ist als Sonderausführung möglich.)


Werkseitige Einstellung bei Lage des Kolben K wie in Bild 1 dargestellt. Lageveränderungen sind möglich (siehe Seite 16, "Einstellen der Paßfederlage").


Dämpfung

Die Dreh- und Hubbewegung kann in der Endlage über Drosselrückschlagventile reguliert werden (Bild 2).

Beschreibung

Nach Lösen der selbstdichtenden Kontermutter ist mittels Innensechskantschlüssel der Drosselquerschnitt einstellbar. Die Schraube des Kegeldrosselventils ganz hineindrehen und anschließend wieder eine Umdrehung lösen. Nun kann die Feineinstellung der Dämpfung erfolgen. Nähere Beschreibung Seite 9.

Drehwinkelverstellung Beschreibung Seite 11

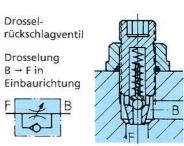
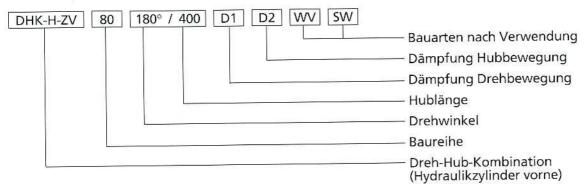


Bild 2

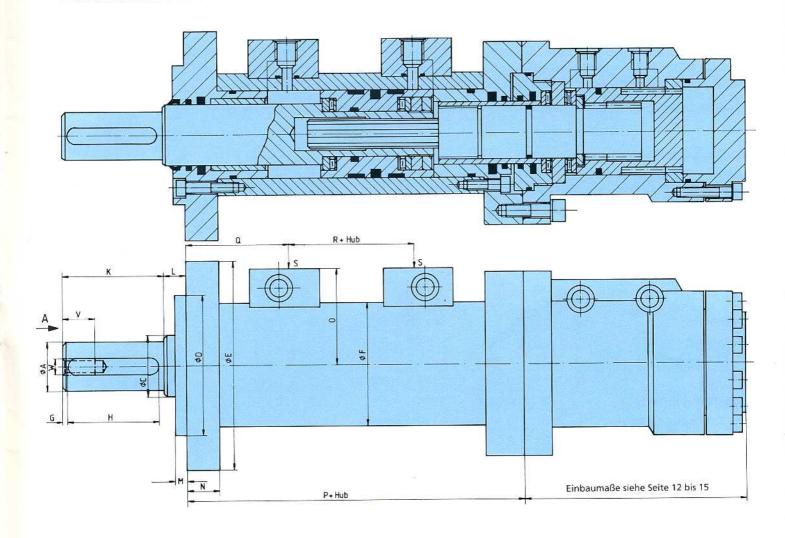
Dreh-Hub-Kombination · Baureihe Zylinder vorne

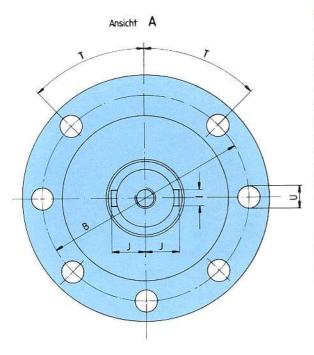
Bei der Baureihe mit der Lineareinheit vor dem Dreh-Antrieb (DHK-H-ZV) sind Hubzylinder und Dreh-Antrieb über Flansche miteinander verbunden.

Die Antriebswelle des Dreh-Antriebes greift mit der Keilwellenverzahnung formschlüssig in die Bohrung der Kolbenstange vom Hubzylinder.


Je nach Hublänge sind Keilwelle und Bohrung entsprechend lang bzw. tief gefertigt. Am Ende der Kolbenstange befindet sich die Antriebswelle mit zwei gegenüberliegenden Paßfedern.

Technische Daten der Baureihe DHK-H-ZV 40 bis 200


Turn of the	40	50	63	80	100	125	160	200
n)	65	200	440	850	1950	3950	8400	16000
1519	0,65	1,25	2,75	5,31	12,18	24,68	52,5	100
	100	160	160	160	160	160	160	160
	12000	30000	47000	75000	110000	160000	270000	360000
	9700	21500	35000	33000	60000	87000	130000	180000
90°	0,020	0,033	0,066	0,131	0,255	0,518	1,145	
180°	0,040	0,066	0,131	0,262	0,509	1,036	2,290	
270°	0,060	0,099	0,196	0,391	0,763	1,554	3,435	
360°	0,080	0,132	0,262	0,521	1,018	2,071	4,580	
lubbeweg	gung		V					
	0,196	0,237	0,384	0,502	0,785	1,226	2,009	auf
	0,10	0,141	0,225	0,2198	0,400	0,590	0,879	Anfrage
			ies					
90°	4	5	8,5	16,7	24,1	47	114	
180°	4,5	5,8	9,8	19,1	29,2	55	136	1
270°	5	6,9	11	21,5	34	63,5	154	
360°	5,5	7,4	12,2	24	38,5	72,5	170	_
	200	9	15	26	38	68	110	1
	1,65	2,75	3,8	5,7	7,5	11	19	
	a + b +	92 2000	o decasoo	mm	-)			
	90° 180° 270° 360° 4ubbeweg 180° 270°	m) 65 r) 0,65 r) 0,65 100 12000 9700 90° 0,020 180° 0,040 270° 0,060 360° 0,080 Hubbewegung 0,196 0,10 90° 4 180° 4,5 270° 5 360° 5,5 6,5 1,65	m) 65 200 r) 0,65 1,25 100 160 12000 30000 9700 21500 90° 0,020 0,033 180° 0,040 0,066 270° 0,060 0,099 360° 0,080 0,132 Hubbewegung 0,196 0,237 0,10 0,141 90° 4 5 180° 4,5 5,8 270° 5 6,9 360° 5,5 7,4 6,5 9 1,65 2,75	m) 65 200 440 r) 0,65 1,25 2,75 100 160 160 12000 30000 47000 9700 21500 35000 90° 0,020 0,033 0,066 180° 0,040 0,066 0,131 270° 0,060 0,099 0,196 360° 0,080 0,132 0,262 Hubbewegung 0,196 0,237 0,384 0,10 0,141 0,225 90° 4 5 8,5 180° 4,5 5,8 9,8 270° 5 6,9 11 360° 5,5 7,4 12,2 6,5 9 15 1,65 2,75 3,8 c + Hub in t	m) 65 200 440 850 r) 0,65 1,25 2,75 5,31 100 160 160 160 12000 30000 47000 75000 9700 21500 35000 33000 90° 0,020 0,033 0,066 0,131 180° 0,040 0,066 0,131 0,262 270° 0,060 0,099 0,196 0,391 360° 0,080 0,132 0,262 0,521 Hubbewegung 0,196 0,237 0,384 0,502 0,10 0,141 0,225 0,2198 90° 4 5 8,5 16,7 180° 4,5 5,8 9,8 19,1 270° 5 6,9 11 21,5 360° 5,5 7,4 12,2 24 6,5 9 15 26 1,65 2,75 3,8 5,7 c + Hub in mm	m) 65 200 440 850 1950 r) 0,65 1,25 2,75 5,31 12,18 100 160 160 160 160 12000 30000 47000 75000 110000 9700 21500 35000 33000 60000 90° 0,020 0,033 0,066 0,131 0,255 180° 0,040 0,066 0,131 0,262 0,509 270° 0,060 0,099 0,196 0,391 0,763 360° 0,080 0,132 0,262 0,521 1,018 Hubbewegung 0,196 0,237 0,384 0,502 0,785 0,10 0,141 0,225 0,2198 0,400 90° 4 5 8,5 16,7 24,1 180° 4,5 5,8 9,8 19,1 29,2 270° 5 6,9 11 21,5 34 360° 5,5 7,4 12,2 24 38,5 6,5 9 15 26 38 1,65 2,75 3,8 5,7 7,5	m) 65 200 440 850 1950 3950 r) 0,65 1,25 2,75 5,31 12,18 24,68 100 160 160 160 160 160 12000 30000 47000 75000 110000 160000 9700 21500 35000 33000 60000 87000 90° 0,020 0,033 0,066 0,131 0,255 0,518 180° 0,040 0,066 0,131 0,262 0,509 1,036 270° 0,060 0,099 0,196 0,391 0,763 1,554 360° 0,080 0,132 0,262 0,521 1,018 2,071 Hubbewegung 0,196 0,237 0,384 0,502 0,785 1,226 0,10 0,141 0,225 0,2198 0,400 0,590 90° 4 5 8,5 16,7 24,1 47 180° 4,5 5,8 9,8 19,1 29,2 55 270° 5 6,9 11 21,5 34 63,5 360° 5,5 7,4 12,2 24 38,5 72,5 6,5 9 15 26 38 68 1,65 2,75 3,8 5,7 7,5 11	m) 65 200 440 850 1950 3950 8400 r) 0,65 1,25 2,75 5,31 12,18 24,68 52,5 100 160 160 160 160 160 160 160 12000 30000 47000 75000 110000 160000 270000 9700 21500 35000 33000 60000 87000 130000 90° 0,020 0,033 0,066 0,131 0,255 0,518 1,145 180° 0,040 0,066 0,131 0,262 0,509 1,036 2,290 270° 0,060 0,099 0,196 0,391 0,763 1,554 3,435 360° 0,080 0,132 0,262 0,521 1,018 2,071 4,580 Hubbewegung 0,196 0,237 0,384 0,502 0,785 1,226 2,009 0,10 0,141 0,225 0,2198 0,400 0,590 0,879 90° 4 5 8,5 16,7 24,1 47 114 180° 4,5 5,8 9,8 19,1 29,2 55 136 270° 5 6,9 11 21,5 34 63,5 154 360° 5,5 7,4 12,2 24 38,5 72,5 170 6,5 9 15 26 38 68 110 1,65 2,75 3,8 5,7 7,5 11 19


Änderungen vorbehalten

Bestellbeispiel:

Dreh-Hub-Kombination · Baureihe Zylinder vorne Einbaumaße

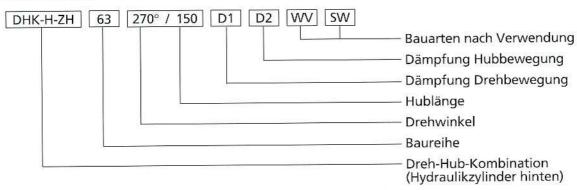
Type DHK-H-ZV	40	50	63	80	100	125	160
Ø A k6	22	28	35	42			
Ø A m6					55	70	100
В	84	100	115	145	160	210	260
Ø C f7	35	35	45	60	70	90	120
Ø D f7	70	80	92	125	140	175	220
ØE	98	120	135	168	188	242	292
ØF	70	80	95	110	130	160	210
G	2,5	2	5	5	5	7	5
H DIN 6885	45	56	70	100	100	125	200
I DIN 6885	8	8	10	12	16	20	28
J DIN 6885	14	17	20,5	24	31,5	39,5	56
K	50	60	80	110	110	140	210
L eingefahren	24	27	30	33	40	49	52
M	17	18	20	24	30	35	40
N	18	18	21	28	30	35	40
0	54	60	68	81	91	112	133
P	192	194	210	249	268	310	394
Q	61	66	68	89	92	99	121
R	55	55	63	63	77	93	120
S	G 1/4"	G 1/4"	G 1/4"	G 1/2"	G 1/2"	G 3/4"	G 3/4"
T	60°	60°	60°	45°	45°	40°	40°
U / Anzahl	9/5	9/5	11/5	11/7	14/7	18/8	22/8
V	20	20	30	35	40	50	55
W	M 8	M 8		M 12	M 16	M 20	M 24

Änderungen vorbehalten

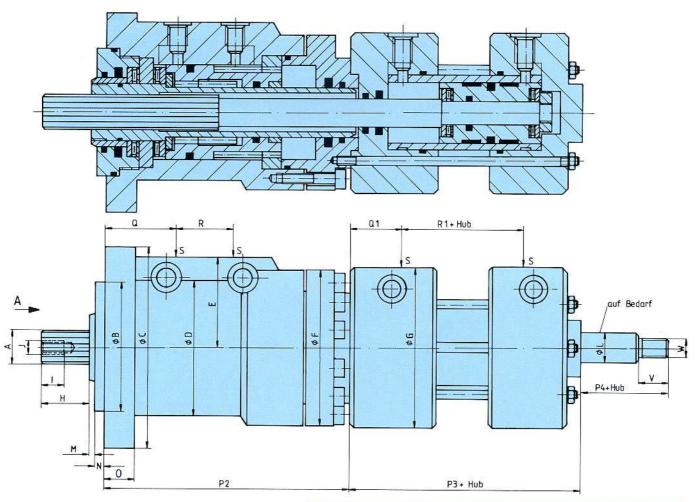
Dreh-Hub-Kombination · Baureihe Zylinder hinten

Bei der Baureihe mit der Lineareinheit hinter dem Dreh-Antrieb (DHK-H-ZH) ist der Hubzylinder direkt am Boden des Dreh-Antriebes befestigt.

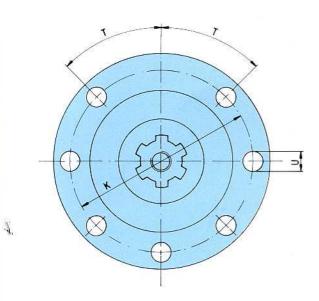
Die verlängerte Kolbenstange der Hubeinheit greift mit der Keilwellenverzahnung formschlüssig in die Hohlwelle vom Dreh-Antrieb und dient gleichzeitig als Antriebswelle. Auf Wunsch können entsprechende Keilnaben-Profilbuchsen nach DIN 5463 als Verbindungselement mitgeliefert werden (siehe Seite 9).


Bei dieser Baureihe ist die Hublänge abhängig von der Baulänge (Drehwinkel) des Dreh-Antriebes.

Technische Daten der Baureihe DHK-H-ZH 40 bis 200

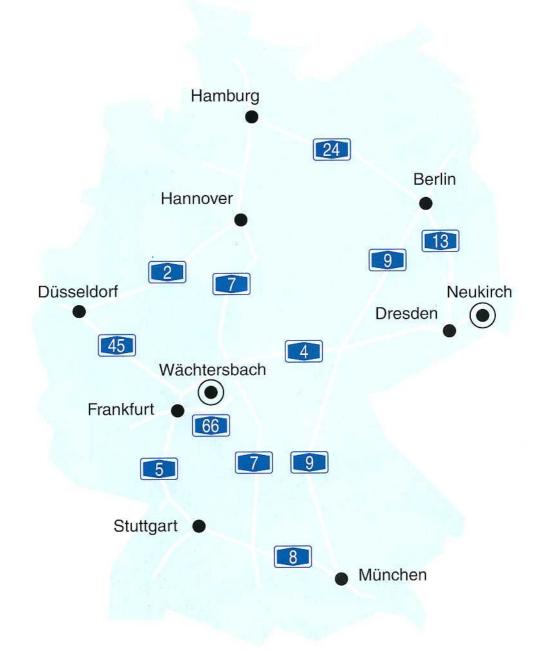

Type DHK-H-ZH		40	50	63	80	100	125	160	200
max. Nenndrehm, bei 210 bar (Nm)		65	200	440	850	1950	3950	8100	14700
Nenndrehmoment (Nm/bar)		0,65	0,95	2,09	4,04	9,28	18,80	38,57	70
max. Betriebsdruck (bar)		100	210	210	210	210	210	210	210
max. Hubkraft (N)		5850	16000	25000	39000	56000	68000	102000	150000
max. Zugkraft (N)		4380	12000	18000	29000	42000	54000	80000	110000
	90°	100	110	120	165	185	220	295	auf
maximale Hublänge	180°	125	143	162	215	250	310	410	
	270°	155	195	212	265	320	390	528	
	360°	185	215	255	325	380	480	647	
Schluckvolumen (dm³) für Drehbewegung	90°	0,0155	0,0247	0,0485	0,097	0,190	0,386	0,7826	
	180°	0,0310	0,0494	0,097	0,195	0,381	0,772	1,565	
	270°	0,0465	0,0742	0,1455	0,292	0,572	1,158	2,347	
	360°	0,0620	0,0989	0,194	0,380	0,763	1,544	3,130	
Schluckvolumen (dm³) für H	lubbeweg	ung		20)	V/-				Anfrage
je 100mm Kolbenstange		0,061	0,080	0,1256	0,196	0,311	0,502	0,785	
je 100mm Stangenseite		0,050	0,062	0,0942	0,147	0,231	0,376	0,588	
Gewicht in kg					Att ===		3		
•	90°	4	5	8,5	16,7	24,1	47	114	
(a) bei Drehwinkel	180°	4,5	5,8	9,8	19,1	29,2	55	136	
	270°	5	6,9	11	21,5	34	63,5	154	
	360°	5,5	7,4	12,2	24	38,5	72,5	170	
b		3,6	4,6	6,2	10	14	21	43	
С		0,65	0,75	1	2	3,2	4,25	7,2	
Gewicht in kg Berechnung nach Formel		a + b + 0		Hub in n	nm	-)			

Änderungen vorbehalten


Bestellbeispiel:

Dreh-Hub-Kombination · Baureihe Zylinder hinten Einbaumaße

Тур	e DHK-H-ZH	40	50	63	80	100	125	160
A =	: Keilwelle	6x11	6x16	6x21	6x26	8x36	8x46	8x62
DIN	1 5463	x14	x20	x25	x32	x42	x54	x72
Ø	B f7	55	68	80	100	115	150	190
Ø	C	98	110	128	150	178	222	278
Ø	D	66	72	87	108	130	167	206
1	E	43	49	57	66	80	93	127
Ø	F	75	82	95	118	147	178	240
Ø	G	78	85	98	120	138	150	198
	Н	25	30	35	42	58	75	90
	I	12	15	22	25	35	40	45
	j	M 6	M 8	M 10	M 12	M 16	M 20	M 24
	K	84	90	108	130	155	195	245
Ø	L f7	14	16	20	25	32	40	50
j.	M	3	3	3,5	3	4	4	5
	N	4	5	5	6	6	8	12
	0	16	18	25	30	31	38	43
P2	Winkel 90°	138	143	184	210	258	311	387
	Winkel 180°	164	178	231	260	324	397	500
	Winkel 270°	196	214	275	313	393	481	617
	Winkel 360°	225	247	316	368	459	569	735
	P 3	90	104	115	127	138	163	197
	P 4	20	20	20	35	35	40	48
	Q	39	39	48	57	65	74	94
	Q 1	27	28	33	36	38	45	47
R	Winkel 90°	28	31	37	47	56,5	76	110
	Winkel 180°	41	48	57	74	89	118,5	168
	Winkel 270°	55	65	79	101	121,5	162,5	224
	Winkel 360°	68,5	80,5	99	125	154	207	285
	R 1	32	43	48	48	55	59	68
	S	G 1/8"	G 1/8"	G 1/4"	G 3/8"	G 1/2"	G 1/2"	G 3/4"
	Т	60°	60°	60°	45°	45°	40°	40°
	U / Anzahl	9/5	9/5	11/5	11/7	14/7	18/8	22/8
m.	V	15	15	15	25	25	30	36
1	W	M 8	M 8	M 10	M 12	M 16	M 20	M 27


Änderungen im Sinne des technischen Fortschritts vorbehalten

HKS Unternehmensgruppe

Leipziger Straße 53-55

D-63607 Wächtersbach-Aufenau Telefon: +49 (0) 6053 / 6163 - 0 Telefax: +49 (0) 6053 / 6163 - 39 e - mail: vertrieb@hks-partner.com Internet: www.hks-partner.com

Charachaitatas Dayely 07